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Abstract

A numerical model for the aerodynamic and aeroelastic analysis of bundled cables, commonly used in
energy transmission lines, is presented in this work. The bundles were idealized by a sectional model
representing the section at the mid span between two supporting towers. A slightly compressible viscous
fluid was considered and the two-dimensional flow was analyzed using a two-step explicit method with an
arbitrary Eulerian–Lagrangean description. A Taylor series expansion was used in time and the classical
Galerkin technique with the finite element method were used for space discretization. Turbulence was
modeled using large eddy simulation with the classical Smagorinsky0s sub-grid scale model. The set of
cables forms a single body with elastic constrains working mechanically coupled, being each cable linked to
the others by spacers. The fluid–structure interaction was taken into account considering equilibrium and
compatibility conditions at the fluid–solid interfaces, and the resulting dynamical equilibrium equation was
solved using the Newmark’s method.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Wind tunnel tests for assessment of aerodynamic and aeroelastic informations in the study of
bundled cables performance are numerically simulated in this work. The usual way to obtain these
see front matter r 2004 Elsevier Ltd. All rights reserved.
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informations is using representative models in a wind tunnel. However, with the improvement in
computer technology and computational fluid dynamics (CFD) algorithms, many of these
problems can also be analyzed by numerical simulation.

Transmission lines are generally used to transport electrical energy through long distances.
Initially, electrical energy was transported by a single conductor, but, in recent years, due to the
growing demand, it was necessary to use several conductors grouped in bundles. Another reason
that led to the employment of a set of cables in transmission lines with high electrical voltage was
the need to reduce interferences in radio wave frequencies and to get improvements in
transmission efficiency.

Bundled cables are formed by a group of parallel conductors separated at short distances by
spacers, working mechanically coupled as a single body.

Although the determination of the aerodynamic coefficients of the set of conductors is
necessary to estimate wind loads, studies about the dynamic stability of bundled cables is an
essential aspect in order to get transmission lines with a satisfactory reliability. Galloping, a term
suggested first by Den Hartog [1], is one of the most common dynamic instability phenomenon of
bundled conductors, and its effect is characterized by a continuous growth of vibration
amplitudes. This phenomenon appears suddenly, when the onset wind velocity is reached,
resulting in a single-mode oscillatory motion perpendicular to the wind direction. Galloping may
produce serious consequences, such as interruption in the energy supply and structural damages.

Several authors have studied the dynamic instability of bundled cables. Den Hartog [1]
established the theoretical foundations of this problem. Wardlaw et al. [2] presented analytical
and experimental results of the aeroelastic behavior of bundled conductors with different
configurations; in this reference the analytical studies were based on the quasi-steady theory, and
stability boundaries were determined for different cable layouts and compared with experimental
values (obtained from sectional and 3-D models). The quasi-steady theory was also used by Price
[3] to analyze flutter for a tandem arrangement of twin conductors. Tokoro et al. [4] presented a
study about instability owing to galloping. They analyze the influence of horizontal distances
between cables, angles of attack and structural damping using 3-D aeroelastic models. Nagao
et al. [5] presented experimental results for a bundle formed by three conductors; they obtained
the onset wind velocity which produces instability due to galloping for different angles of attack
and Scruton numbers; the Scruton number is given by Sc ¼ 2md=rD2; where m and D are the
structural mass and the diameter of the cables, respectively, r is the fluid specific mass and d is the
logarithmic decrement.

Aerodynamic behavior of bundled cables has been also a subject matter of several researchers.
Wardlaw [6] presents a detailed study about interference problems in bodies separated by short
distances, determining aerodynamic coefficients for different angles of attack of the wind
direction. Oliveira [7] presented experimental results for the drag and lift coefficients for bundles
formed by two and four conductors as a function of the angle of wind incidence. Alam et al. [8]
presented results of drag and pressure coefficients for a tandem arrangement with different
distances between two parallel cables.

In this work, the analysis of the flow of a slightly compressible fluid in a two-dimensional
domain was carried out using an explicit two-step Taylor–Galerkin method with an Arbitrary
Lagrangean–Eulerian (ALE) description. A similar Taylor–Galerkin formulation was used by
Tabarrok and Su [9] and by Rossa and Awruch [10], but with a semi-implicit scheme. The ALE
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scheme was first presented by Hirt et al. [11] in a numerical work. Since this first paper, many
authors used this description with the same concepts, such as Hughes et al. [12], Donea et al. [13],
Liu et al. [14], Benson [15], among others. The classical Smagorinsky’s model (see Murakami [16])
was employed for the sub-grid scales simulations in turbulent flows. The finite element method
(FEM) was used for spatial discretization. The structure was considered as a rigid body with
elastic restrains for the cross-section rotation and displacement components. The coupling
between fluid and structure was performed applying the compatibility and equilibrium equations
at the interface. The structural dynamic analysis was accomplished using the Newmark’s method
[17]. Examples are presented to illustrate the capability of the computational algorithm for
aerodynamic and aeroelastic calculations.
2. Governing equations for the flow simulation

The governing equations for the fluid dynamic analysis are the well-known Navier–Stokes
equations and the mass conservation equation [18]. In this work a slightly compressible turbulent
flow and an isothermal process is considered. An ALE [19] description is considered, allowing the
fluid–structure interaction analysis. Hence, the system of governing equations used here is given
by:

(1) Momentum equations

qvi

qt
þ ðvj � wjÞ

qvi

qxj

þ
1

r
qp

qxj

dij �
q
qxj

nþ ntð Þ
qvj

qxi

þ
qvi

qxj

� �
þ l

qvk

qxk

dij

� �
¼ 0;

ði; j; k ¼ 1; 2Þ in O: ð1Þ

(2) Mass conservation equation

qp

qt
þ ðvj � wjÞ

qp

qxj

þ rc2 qvj

qxj

¼ 0; ðj ¼ 1; 2Þ in O: (2)

In these equations, vi and p (the velocity components and the pressure, respectively) are the
unknown variables and nt is the eddy viscosity, characterizing a turbulent flow. The molecular
viscosities n ¼ m=r and l ¼ w=r; the specific mass r and the sound speed c, are the fluid properties.
The moving mesh velocity components are given by wj, dij is the Kroenecker delta and O is the
domain to be analyzed.

The mass conservation equation, given by expression (2), was obtained considering the general
equation of mass balance, which may be written as

qr
qt

þ vj
qr
qxj

þ r
qvj

qxj

¼ 0; ðj ¼ 1; 2Þ in O: (3)

Taking into account that the velocity of sound propagation is given by c2 ¼ qp=qr; Eq. (3) may
be expressed as

1

c2

qp

qt
þ

vj

c2

qp

qxj

þ r
qvi

qxi

¼ 0: (4)

Multiplying Eq. (4) by c2 and considering an ALE description, Eq. (2) is obtained.
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This form of the continuity equation corresponds to the so-called ‘‘pseudo-compressibility’’
hypothesis, introduced by Chorin [20] to solve incompressible flows. Slight compressibility is
justified by natural flows, where the sound propagation has no infinite value (like in the air, for
example), as predicted by the incompressibility assumption. This approach has been widely used
by several authors to analyze incompressible flows, such as Kawahara and Hirano [21], He and
Song [22], among others.

As a consequence of the extreme computational efforts necessary to simulate all the turbulence
scales, large eddy simulation (LES) with Smagorinsky’s sub-grid scale model [23] was employed.
In this scheme the large scales are simulated directly and the small scales are simulated using a
mathematical model. The governing equations for the large scales are obtained through a filtering
process applied to Eqs. (1) and (2), where the variables (velocity components and pressure) are
decomposed into two parts: large and sub-grid scale. Details of the filtering process may be found,
for example, in Murakami [16]. After this filtering process, some unresolved terms arise; these
terms are substituted by a turbulence closure model and the equations are finally expressed in
terms of the large scale components. Each finite element in the mesh may be considered as a box
filter, representing the cutting frequency in the Kolmogorov’s energy dissipation curve. Hence, for
high frequencies, related to the sub-grid scales, it is used as a model because the small elements are
not able to represent these high frequencies. Smagorinsky [23] provided an expression, based on
the Boussinesq’s hypothesis, for the sub-grid terms, resulting in an eddy viscosity expression given
by

nt ¼ ðCSDÞ
2
ð2SijSijÞ

1=2; (5)

where Sij is the strain rate tensor, CS is the Smagorinsky’s constant (taking values from 0.1 up to
0.25) and D is characteristic element (filter) dimension.

The boundary conditions of Eqs. (1) and (2) are

vi ¼ wi ði ¼ 1; 2Þ on the solid boundary Gvs
; (6)

vi ¼ v̂i on the boundary Gva
or p ¼ p̂ on the boundary Gp; (7)

�p

r
dij þ nþ ntð Þ

qvi

qxj

þ
qvj

qxi

� �
þ l

qvk

qxk

� �
nj ¼

sijnj

r
¼ Si; ði; j; k ¼ 1; 2Þ in Gs: (8)

For a purely Eulerian description, the moving mesh velocity at each nodal point, with
components wi; is equal to zero. Now, for a purely Lagrangean description, the mesh motion
velocity at each nodal point is equal to the fluid velocity, i.e. vi ¼ wi (i=1, 2). Finally, in an
Arbitrary Lagrangean–Eulerian formulation, the mesh velocity is not equal to zero and, at the
same time, it is different of the fluid velocity at a specific point.

On the boundaries Gva
and Gp; prescribed values for velocity and pressure, v̂i and p̂; respectively,

must be specified, while on Gs the boundary force components Si must be in equilibrium with the
stress tensor components sij : In Eq. (8), nj is the cosine of the angle formed by a vector
perpendicular to Gs and the axis xj:

Initial conditions for the pressure and the velocity components at t ¼ 0 must be given.
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3. The algorithm for the flow simulation

Expanding the governing equations in Taylor series up to second order terms [24], the flow is
analyzed with the following steps [25]:

(1) Calculate ~vnþ1=2
i with
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i ¼ vn

i þ
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2
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qxj
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� �
þ l

qvk
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4
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q2vn

i

qxjxk

�
; (9)

where rj ¼ ðvj � wjÞ and n̄ ¼ ðnþ ntÞ:
(2) Calculate pnþ1=2 with

pnþ1=2 ¼ pn þ
Dt

2
�rj

qp

qxj

� rc2 qvj

qxj

� �n�
þ
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4
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�
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(3) Calculate

Dpnþ1=2 ¼ pnþ1=2 � pn: (11)

(4) Calculate v
nþ1=2
i with

v
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1

r
Dt2

8
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: (12)

(5) Calculate vnþ1
i ¼ vn

i þ Dvi with
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qxj

�
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(6) Calculate pnþ1 ¼ pn þ Dp with

Dp ¼ Dt �rj

qp

qxj

� rc2 qvj

qxj

� �� �nþ1=2

: (14)

These expressions must be employed after the classical Galerkin technique is applied into the
FEM context. In this technique, the residual of the governing equations, where shape functions
are used to approximate flow and geometric variables, are orthogonalized with respect to weight
functions; in the Galerkin method, the same shape functions used to approximate geometric and
flow variables are used as weight functions. A bilinear isoparametric quadrilateral element with
four nodes was adopted in this work. More details about the FEM in fluid dynamics may be
found in Reddy and Gartling [26], Gresho and Sany [27], among others.

As the scheme is explicit, the stability condition is given by

Dtiob
Dxi

c þ vi

; ði ¼ 1; . . . ;NTEÞ; (15)

where bo1:0 is a safety coefficient, Dxi and vi are the ith element characteristic dimension and the
velocity, respectively, and NTE is the total number of elements.

Although a variable time step could be adopted [28], in this work a unique value of Dt was used,
adopting the minimum value obtained with Eq. (15).
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4. The fluid–structure coupling

In the present work, the structure is idealized as a two-dimensional rigid body. Displacement
and rotations take place on the plane formed by the axis x1 and x2; the body is constrained by
dampers and springs, as indicated in Fig. 1.

The structural dynamic equilibrium equation is given by the matricial expression

MS
€U

c

S þ CS
_U

c

S þ KSU
c
S ¼ Qc

S; (16)

where MS is the mass matrix, CS the damping matrix, KS the stiffness matrix and €U
c

S;
_U

c

S and Uc
S

the acceleration, velocity and generalized displacements, respectively. Finally, Qc
S is the load

vector applied in the gravity center.
The subscript S means that these matrices belong to the structure and the superscript c indicates

that these values correspond to the gravity center of the solid body. In Eq. (16), the dimension of
all square matrices is 3� 3, with non-zero elements only in the diagonal terms, while the
dimension of the vectors is 3� 1.

It must be noticed that the hypothesis considering a rigid structure is proper when deformations
of the cross-section are small compared to the rotation and displacement components.

At the solid–fluid interface, the compatibility condition must be satisfied, or in other words, the
fluid velocity and the structure velocity must be the same at the common nodes of both fields. The
compatibility condition and the translation of variables evaluated at the gravity center of the body
x2

x1

C11

K11
K33

K22

C33

C22

M1

M2

M3

Fig. 1. Structure model, formed by a rigid body constrained by springs and dampers. Structure degrees of freedom:

u1=displacement in the direction of axis x1, u2=displacement in the direction of axis x2, y=rotation around the axis x3

(perpendicular to the plane formed by the axes x1 and x2).



ARTICLE IN PRESS

A.L. Braun, A.M. Awruch / Journal of Sound and Vibration 284 (2005) 51–73 57
to a point located at the fluid–structure interface may be written with the following expressions:

_U
I

S ¼ VI
F ¼ L _U

c

S with L ¼
1 0 �l2

0 1 l1

� �
; (17)

where subscripts S and F are referred to the structure and the fluid, respectively, and the
superscript I is referred to the interface. It is important to observe that both vectors, _U

I

S and VI
F ;

have two components that correspond to the global axis direction. However, _U
c

S has three
components, because it includes the rotation around an axis perpendicular to the plane formed by
x1 and x2. Values of _U

c

S can be transported to the solid–fluid interface (or to nodes belonging to
the structure boundary) through a translation matrix L; as given by Eq. (17), being l1 and l2 the
distance components between the gravity center of the body and the point under consideration,
measured in the global system. Considering Fig. 2, it is observed that the distance components
from a boundary point to the body gravity center are functions of y; and it may be written as

lðyÞ ¼
l1ðyÞ

l2ðyÞ

� �
¼

cos y � sin y

sin y cos y

� �
xA

1g

xA
2g

( )
¼ RxA

g : (18)

Deriving Eq. (17) with respect to time, taking into account matrix L and Eq. (18), the following
expression is obtained:

€U
I

S ¼ _V
I

F ¼ L €U
c

S þ L0ð_yÞ _U
c

S; where L0ð_yÞ ¼
0 0 �l1

_y

0 0 �l2
_y

" #
: (19)

Eqs. (17) and (19) are applied to each node of the interface, where the equilibrium condition
must also be satisfied, which means that the load S acting on the structure boundary, must be
equal to the load S given by Eq. (8), but with an opposite sign (because here the fluid action on
the structure is considered, while Eq. (8) represents the boundary action on the fluid). S can be
x1gA

x2gA
l

C

A

C'

X2g

X1g

X2g

X1g

A'

l

l1(theta)

l2(theta)

theta

Fig. 2. Rigid body motion. The subscripts ‘‘g’’ and ‘‘l’’ are referred to quantities related to global and local axis,

respectively.



ARTICLE IN PRESS

A.L. Braun, A.M. Awruch / Journal of Sound and Vibration 284 (2005) 51–7358
transported to the gravity center of the body, and the force Qc
S; acting on the structure is given by

Qc
S ¼ �

Z
GS

LTS dG; (20)

where LT is the transpose matrix of L; given by Eq. (17), and S contains the two components of
the fluid boundary force acting on the structure at a point located on the structure boundary GS

(GS represents also the solid–fluid interface); the force components Si, contained in vector S; are
given by Eq. (8), but with an opposite sign.

To determine the coupling effects between the fluid and the structure, in the FEM context,
consider an element belonging to the fluid domain in contact with the solid body, as indicated in
Fig. 3, where it can be observed that only points 1 and 2 are in contact with the structure.

The momentum equations in its matricial form, at element level (e), can be obtained by
applying the Galerkin method to Eq. (1).

Regarding the structural analysis, the matricial expression that contributes to the assembling of
the overall dynamic equilibrium equation is

MMII _V
I
þ ADIIVI þMMIF _V

F
þ ADIFVF �

1

r
GPI

¼ SI : (21)

In Eq. (21), _V
I

and VI contain, respectively, acceleration and velocity components
corresponding to nodes 1 and 2 of Fig. 3, while _V

F
and VF contain variables corresponding to

nodes 3 and 4 of the same figure. A similar remark can be made with respect to the vectors of
Node 3

Node 4 Node 1

Node 2

element (e)
Fluid

Solid
Body

Interface

Fig. 3. Element of the fluid domain, in contact with the solid body.



ARTICLE IN PRESS

A.L. Braun, A.M. Awruch / Journal of Sound and Vibration 284 (2005) 51–73 59
pressure gradients GP and boundary forces S: Matrix MMII contains elements coming from the
connection of node 1 with node 2. Matrix MMIF contains elements originated by the connection
between the nodes 1 with 4 and 2 with 3. Similar commentaries can be made with respect to
matrices ADII and ADIF :

Eq. (17) with matrix L and Eq. (19) with matrix L0ð_yÞ are considered for each node at the
interface. Then, when an element side with its two nodes lying on the fluid–structure interface is
considered, Eq. (17) and (19) are written in the form

_U
I

S ¼ VI ¼ T _U
c

S;
€U

I

S ¼ _V
I
¼ T €U

c

S þ T0ð_yÞ _U
c

S: (22)

Referring again to Fig. 3, the matrices T and T0 are given by

T ¼

1 0 �l1
2

0 1 l1
1

1 0 �l2
2

0 1 l2
1

2
6664

3
7775 ¼

L

L

� �
; T0ð_yÞ ¼

0 0 �l1
1

0 0 �l1
2

0 0 �l2
1

0 0 �l2
2

2
6664

3
7775_y ¼

L0ð_yÞ

L0ð_yÞ

" #
; (23)

where the superscript i (=1, 2) indicates the local node number at the interface and the subscript j

(=1, 2) indicates the component in the direction of the axis xj.
The contribution from SI ; on the side 1–2 of the element (e), to the total load acting at the

gravity center of the body, can be calculated with the expression

Q̂
c

S ¼ �TTSI : (24)

Considering Eqs. (16), (17), (19) and (21), with the last one multiplied by r, the structural
dynamic equilibrium equation, taking into account the solid–fluid coupling effect, is given by

MS þ
XNTL

i¼1

ðTTrMMIITÞi

" #
€U

c

S þ CS þ
XNTL

i¼1

ðTTrADIITþ TTrMMIIT0Þi

" #
_U

c

S þ KSU
c
S

¼ �
XNTL

i¼1

ðTTrMMIF _V
F
þ TTrADIFVF � TTGPI

Þi þQc
S

" #
; ð25Þ

where NTL is the total number of fluid elements in contact with the structure, having at least one
straight segment common to the solid body boundary, forming the solid–fluid interface. The
matricial Eq. (25) may be re-written in a compact form as

MS
€U

c

S þ CS
_U

c

S þ KSU
c
S ¼ Q

c

S: (26)

It can be noticed that CS is a nonlinear and a non-symmetric matrix, because it contains the
advective terms and TTMMIIT0ð_yÞ

� �
:

The analysis for both fields is made in a sequential way. First, Eqs. (9)–(14) are solved, with the
smallest Dt calculated with Eq. (15) and applying the boundary conditions given by Eqs. (6)–(8).
After this, Eq. (26) is solved using the Newmark’s method [17].
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5. Aerodynamic coefficients calculation and automatic mesh motion scheme

The drag coefficient CD is related to the forces acting on the structure in the direction
X1g, according to Fig. 2, while the lift coefficient CL is related to the forces acting on the
structure in the direction X2g, regarding the same figure referred above. On the other hand,
the Strouhal number (St) is a non-dimensional number referred to the vortex shedding
phenomenon observed in immersed bodies. These three coefficients are obtained from the
equations

CD ¼

PNTN
i¼1 SI

1i
1
2
rV2

0L0

; CL ¼

PNTN
i¼1 SI

2i
1
2
rV2

0L0

; St ¼
f vL0

V0
; (27)

where r is the fluid specific mass, V0 is a characteristic velocity (the inflow velocity), L0 is a
characteristic dimension of the body (the cylinder diameter D), fv the shedding frequency
(obtained from the curve describing variations of the lift coefficient in time) and SI

1 and SI
2 are the

forces in the directions of the axis x1 and x2, respectively, acting on the structure at node i, located
on the interface. NTN is the total number of nodes located on the solid–fluid interface. The forces
SI

1 and SI
2 are the components of the force vector SI ; given by Eq. (21). These forces are applied to

the structure on each fluid element side belonging to the interface.
Force components SI

1 and SI
2 are obtained by the finite element discretization of Eq. (8) over the

fluid–structure interface, considering a trapezoidal distribution of the fluid load in both directions.
The effects of the fluid on the immersed body is given by

SI
j ¼

S1
j

S2
j

8<
:

9=
; ¼

Z
l1�2

F1

F2

( )
ðF1S1

j þ F2S2
j Þdl ¼

Z
l1�2

F2
1 F1F2

F2F1 F2
2

" #
S1

j

S2
j

8<
:

9=
;dl

¼

Z 1

�1

ð1 � xÞ2 ð1 þ xÞð1 � xÞ

ð1 þ xÞð1 � xÞ ð1 � xÞ2

" #
S1

j

S2
j

8<
:

9=
; l1�2

8
dx ¼

l1�2

6

2S1
j þ S2

j

S1
j þ 2S2

j

8<
:

9=
;; ðj ¼ 1; 2Þ

ð28Þ

where l1�2 represents an interface segment length, j indicates the force component in the direction
of the axis xj, x is the natural coordinate of the integration domain, F1 and F2 are the
interpolation functions and 1 and 2 are the local node numbers of the fluid element belonging to
the body boundary.

Taking into account that the immersed body in the fluid can move and rotate in its plane
and that the flow is described by an arbitrary Lagrangean–Eulerian (ALE) formulation, a
scheme for the mesh motion is necessary, establishing the velocity field w in the fluid domain, such
that the element distortion will be as smaller as possible, according to the following boundary
conditions:

winterface ¼ VI
F ¼ _U

I

E ; wjexternal boundaries ¼ 0: (29)

In the present work, the mesh motion scheme is similar to that used by Teixeira and Awruch
[29]. Considering that i is an inner node in the fluid field and j is a boundary node, the mesh
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velocity components at node i, in the direction of the axis xk, are given by

wi
k ¼

PNS
j¼1aijw

j
kPNS

j¼1aij

; ðk ¼ 1; 2Þ; (30)

where NS is the total number of nodes belonging to the boundary lines and aij are influence
coefficients between inner nodes and nodes belonging to the boundaries of the flow field, being
aij ¼ 1=ðdijÞ

n; where dij is the distance between i and j, and nX1: The exponent n can be adjusted
by the user.
6. Numerical applications

6.1. Aerodynamic analysis of bundled cables

In this numerical application, drag and lift coefficients for some characteristic bundle layouts
were determined. As depicted in Fig. 4, three different studies were carried out. First, in a wake
interference study (case (a)), forces on a smooth circular cylinder behind an identical upstream
cylinder at a fixed horizontal distance (X/D=10) were obtained as a function of the cross-stream
position (Y=D). Finally, the wind forces as functions of the flow incidence angle on two typical
cable configurations employed in power lines were estimated (cases (b) and (c)). In the last two
cases, the forces are measured at the bundle mechanical center, taking into account the
contribution of all cables, as indicated in Fig. 4.

Geometrical and fluid flow characteristics used in the numerical simulations are given in
Table 1. The time intervals adopted in the present work were Dt=5� 10�5, 2� 10�5 and
3� 10�5 s, for the configurations (a), (b) and (c) in Fig. 4, respectively. All simulations were
carried out using 1.5� 106 time steps and values of the mean forces were calculated considering
the last 5� 105 time increments. The non-slip boundary condition was prescribed on the body
surfaces.

The finite element meshes for the three cases were built using quadrilateral bilinear
isoparametric elements and regions such as boundary layers and wake areas were carefully
refined in order to get similar results to those obtained with experimental works. The smallest
element dimension observed in the finite element meshes was about 10�3

�D.
X/D = 10

D
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Fig. 4. Configurations of the cables employed in the aerodynamic analysis: (a) cable in downstream position in a wake

interference study; (b) bundle with two cables; and (c) bundle with four cables.
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Table 1

Fluid properties according to the cables set configuration

Aerodynamic analysis–fluid constants

Downstream cable of a twin set

Specific mass (r) (kg/m3) 1.2

Kinematic viscosity (n)(m2/s) 3.85� 10�4

Reynolds number (Re) 2.6� 104

Mach number (M ¼ V0=c) (c=sound vel.) 0.030

Reference velocity (V0) (m/s) 10.0

Smagorinsky0s constant (CS) 0.2

Characteristic dimension (L0) (m) 1.0

Bundle with two cables

Specific mass (r) (kg/m3) 1.2

Kinematic viscosity (n) (m2/s) 4.13� 10�7

Reynolds number (Re) 3� 104

Mach number (M ¼ V0=c) (c=sound vel.) 0.052

Reference velocity (V0) (m/s) 0.5

Smagorinsky’s constant (CS) 0.2

Characteristic dimension (L0) (m) 0.0248

Bundle with four cables

Specific mass (r) (kg/m3) 1.2

Kinematic viscosity (n) (m2/s) 3.10� 10�7

Reynolds number (Re) 4� 104

Mach number (M ¼ V0=c) (c=sound vel.) 0.068

Reference velocity (V0)(m/s) 0.5

Smagorinsky’s constant (CS) 0.2

Characteristic dimension (L0) (m) 0.0248
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Wake interference studies in terms of force coefficients (drag and lift forces) are shown in Fig. 5,
where a comparison with the experimental work carried out by Wardlaw and Cooper [30] (also
published in Ref. [6]) is also presented. Results for drag and lift coefficients for the two bundles
with different flow incidence angles are shown in Fig. 6, where comparison with an experimental
model performed by Oliveira [7] is also presented.

Strouhal numbers were computed for the different cases presented in this section and they are
summarized in Table 2, where comparisons with experimental data for a single cylinder obtained
from Schlichting [18] are shown. It can be noticed that there is no significant differences between
each case studied here and the single cylinder. An exception is the four-bundle arrangement,
where a higher shedding frequency (fv) is verified.

Instantaneous streamlines and pressure fields for the wake interference analysis corresponding
to the different cross-stream positions are presented in Fig. 7. The same fields corresponding to
the two bundles and for the different angles of attack are shown in Fig. 8.

The drag and lift force profiles in Figs. 5 and 6 are clearly consistent with the fields presented in
Figs. 7 and 8. The lift force increases from Y=D ¼ 0; where the symmetry reproduces the single
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Fig. 5. Aerodynamic coefficients obtained in the wake interference analysis. Drag coefficient CD: (K) present work;

(’) Wardlaw and Cooper [30]. Lift coefficient CL: (m) present work; (E) Wardlaw and Cooper [30].
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Fig. 6. Aerodynamic coefficients obtained in the bundled cables analysis: (a) bundle with two cables; (b) bundle with

four cables. Drag coefficient CD: (K) present work; (’) Oliveira [7]. Lift coefficient CL: (m) present work; (E) Oliveira

[7].
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Table 2

Strouhal number computed according to the cables set arrangement

Cables set arrangements Angle of attack (a) Cross-stream position (Y=D)

01 151 301 451 0 1 2.5 4

Bundle with two cables 0.220 0.184 0.191 0.212 —

Bundle with four cables 0.227 0.222 0.233 0.210

Downstream cable of a twin set — 0.160 0.167 0.185 0.195

Single cylinder [18] 0.190
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cylinder situation, until Y=D 	 1 where wake effects are more intensive. Then, the lift force begins
to decrease owing to the reduction of wake interference as the relation Y=D increases. The drag
force has its smallest value when Y=D ¼ 0; due to the wake turbulence, causing the transition at a
lower Reynolds number. As the separation between the cylinders (given by the relation Y=D)
increases, the drag force converges to the value of the single cylinder.

The same commentaries can be applied to the bundles, but now forces are functions of the
incidence angle. The lift force has inexpressive values for small incidence angles due to the cables
symmetry when they are referenced to the stream direction. As the wind angle of attack increases
the bundle cross section becomes asymmetric and consequently the lift force becomes larger. On
the other hand, the drag force values are directly related to the area of the cables set exposed to
the fluid stream. For a flow incidence angle equal to zero, the wake turbulence produced by the
bundle upstream components generates a reduction of the global drag. For incidence angles
ranging from 151 to 301, practically the total area of the cables set is exposed to the fluid stream
and higher values of the drag force are obtained. For incidence angles ranging from 301 to 451 a
gradual reduction of the global drag is observed, when the bundle downstream components are
immersed in the wake of the upstream components again, similarly to the case where the angle of
attack is equal to zero.

An important factor, which may cause some differences between numerical and experimental
results, is the cables roughness when the cable bundles are analyzed; while the experimental model
was carried out with rough cables, the numerical simulation did not take into account this
characteristic of the cables surfaces. In spite of these reasons, good agreements were obtained
between numerical and experimental simulations, once the adopted Reynolds number belongs to
the sub-critical region where the cables roughness does not influence the results when compared to
cables with smooth surfaces.

6.2. Dynamic instability due to galloping

Analysis of dynamic instability owing to galloping in a set of two and three aligned and coupled
cables is presented in this section. The main objective is to reproduce aeroelastic tests, where the
cables motion interacts with the surrounding fluid motion. As it was previously mentioned,
galloping is characterized by structural vibrations of large amplitude in the perpendicular
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Fig. 7. Instantaneous streamlines and pressure fields obtained in the wake interference analysis. (a) Y/D=0; (b) Y/

D=1; (c) Y/D=2.5; (d) Y/D=4.
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direction to the flow. The critical wind velocity or onset wind velocity is identified when the
structure begins to show oscillating displacements with large magnitude. The numerical
simulation aims to reproduce some of the experimental tests carried out by Tokoro et al. [4]
and Nagao et al. [5] for wake galloping situations.

The first application was performed in order to study the wake-galloping phenomenon for a
leeward cable of a twin cable arrangement (see Fig. 9). Results of this numerical analysis were
compared with those obtained with an experimental work by Tokoro et al. [4] for a specific
aerodynamic and structural condition. The cable arrangement was submitted to a wind with an
incidence angle equal to 151 and the structural response was a consequence of the forces acting
on the mechanical center of the downstream cylinder considering that the upstream cylinder
was fixed.

The second application was based on the experimental work developed by Nagao et al. [5],
where a set formed by three bundled cables separated by the same distance and with the same
diameter (see Fig. 10) was analyzed. Mechanically, the structure was represented by the mid span
section, which has three degrees of freedom: two displacements components and a rotation
representing the bundle torsion. The adopted angle of wind incidence was 171.
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Fig. 8. Instantaneous streamlines and pressure fields obtained in the bundled cables analysis. a ¼ 01: (a) bundle with

two cables and (b) bundle with four cables. a ¼ 151: (c) bundle with two cables and (d) bundle with four cables. a ¼ 301:
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Fluid properties as well as the geometrical characteristics are presented in Table 3. Reynolds
numbers (with the cable diameter as characteristic length) ranging from 2.4� 104 to 1.15� 105

were adopted. For both applications an oblique flow was imposed prescribing the inflow velocity
components in the global coordinate directions on the external boundaries (excepting the outflow
boundary, where boundary forces were considered). Compatability and equilibrium boundary
conditions were prescribed on the body surfaces.

The time intervals adopted for the time marching process were Dt=2� 10�5 s and
Dt=1.15� 10�5 s for the first and the second applications, respectively.

The main structural properties are presented in Table 4. It is important to notice that the same
natural frequencies, damping ratio and inertia are considered for all the vibration modes in the
case of the three bundled cables, as in the experimental model. Structural damping was obtained
from the Scruton number, taking into account that Sc ¼ 2md=rD2 ffi 4pmx

�
rD2 (where it was

considered that the logarithmic decrement d is approximately equal to 2px; with x being the
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Fig. 10. Geometrical characteristics of the galloping analysis for a set of three cables in bundle arrangement.

Table 3

Fluid properties according to cables set arrangement (aeroelastic analysis–fluid constants)

Fluid properties (three bundled cables) Fluid velocities (m/s)

9.0 9.6 12.0

Reynolds number (Re) 2.40� 104 2.56� 104 3.20� 104

Mach number (M ¼ V0=c) (c=sound vel.) 0.027 0.029 0.036

Kinematic viscosity (n) (m2/s) 1.5� 10�5

Smagorinsky’s constant (CS) 0.12

Characteristic dimension (L0) (m) 0.04

Fluid properties (leeward cable of a twin arrangement) Fluid velocities (m/s)

7.5 11.0 13.0 15.0

Reynolds number (Re) 5.75� 104 8.44� 104 9.97� 104 1.15� 105

Mach number (M ¼ V0=c) (c=sound vel.) 0.023 0.033 0.039 0.045

Kinematic viscosity (n) (m2/s) 1.3� 10�4

Smagorinsky’s constant (CS) 0.12

Characteristic dimension (L0) (m) 1.0
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damping ratio and m the corresponding mass). Then, the structural damping is given by CS ¼

2mxioin; where on is the circular natural frequency and the superscript i indicates the
corresponding mode.

The mean amplitudes in the X and Y directions (see Fig. 9) obtained for the downstream
component of a twin cable arrangement are shown in Fig. 11. Wind velocities equal to 7.5, 11, 13
and 15 m/s were analyzed. It may be observed that numerical results are close to those obtained
experimentally. In Fig. 11 it is shown that the critical velocity value computed numerically is
smaller than the onset velocity obtained in a wind tunnel test. In other words, the galloping
phenomenon, using the numerical algorithm presented here, is anticipated when compared to the
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Table 4

Structural data according to the cables set arrangement

Structural properties Cables set arrangement

Leeward cable of a twin set Three bundled cables

Translational stiffness—(N/m) 1812.06 6779.23

Translational mass—(kg/m) 20.4 53.0

Natural frequency (f n)—(Hz) 1.5 1.8

Scruton number (Sc ¼ 2md=rD2) 57 40
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Fig. 11. Mean amplitudes as functions of the wind velocity for the downstream component of a twin cable

arrangement. X direction: (K) present work; (’) Tokoro et al. [4]. Y direction: (m) present work; (E) Tokoro et al. [4].
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experimental results. Furthermore, the mean amplitudes obtained in the X direction are a bit
higher than the experimental analysis. It reveals a stronger coupled vibration for the numerical
model.

The mean amplitudes in the Y direction (see Fig. 10) referred to the three bundled cables are
presented in Fig. 12 for wind velocities equal to 9, 9.6 and 12 m/s. It can be observed that the
critical velocity is located in an interval between 9 and 9.6 m/s. Nagao et al. [5] reported a higher
value for the critical velocity, located in an interval ranging from 9.75 to 10.75 m/s. It can be seen
that a reasonable agreement is obtained between the present work and the experimental model.
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Fig. 13. Instantaneous streamlines and pressure fields obtained in the aeroelastic analysis: (a) wake galloping in a

downstream component of a twin cable arrangement; and (b) galloping in three bundled cables.
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Instantaneous pressure fields and streamlines are presented in Fig. 13. The wind velocities are
15 and 12 m/s, for the twin cable arrangement and the three bundled cables, respectively. It can be
visualized that due to the proximity among the cylinders, bodies located downstream are greatly
influenced by the wake of the bodies located upstream, principally for incidence angles ranging
from 101 to 201. This kind of dynamic instability is the well-known ‘‘wake galloping’’
phenomenon.
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7. Conclusions

A numerical model to simulate wind action on bundled cables of electrical energy transmission
lines was presented in this work. The computer code was able to get good results when compared
to those obtained in wind tunnel tests by other authors for aerodynamic and aeroelastic problems.
Important aerodynamic and aeroelastic aspects related to the analysis of cables were well
demonstrated and some commentaries were included in Section 6; they will be briefly summarized
below:
(1)
 Wake interference implications on the force coefficients, like drag reduction due to the
transition anticipation for tandem arrangements and the increasing of the lift force as a
function of the asymmetry of the cables with respect to the stream direction, were well
reproduced
(2)
 Galloping and wake galloping characteristics, such as the suddenly growth of vibration
amplitudes after the onset velocity is reached (which is a relative low velocity), were observed,
according to previous experimental experiences. Furthermore, wind incidence angles used in
the numerical simulations have proven to be in a critical range with respect to the dynamic
instability phenomenon, as it was observed in experimental works presented here.
Some improvements may be still implemented on the computational code in order to obtain a
more efficient numerical process:
(1)
 Sub-domains with different time intervals may be introduced using an algorithm employing
sub cycles, similar to that presented by Teixeira and Awruch [28].
(2)
 Pressure may be determined with an implicit scheme using a Poisson equation; although more
memory will be required, it will be possible to use larger time intervals, and probably spurious
oscillations, which sometimes appear in the explicit scheme, will be eliminated.
(3)
 A dynamic sub-grid scale model for turbulence simulation with LES may be used; this
model takes automatically a variable value for C0 in the calculation of the eddy viscosity
(see Murakami [16]).
(4)
 The displacements of the bundled cables produce axial stresses, introducing geometrically
nonlinear effects, which may be considered using a geometrically nonlinear matrix.
(5)
 Perhaps the most important aspect would be the implementation of a 3-D model, substituting
the sectional model presented in this work.
These improvements will be incorporated in future works, following an on-going research
about CFD applications in Computational Wind Engineering.
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